OA ist die Vektor-Darstellung des Punktes A wie in der Abbildung
z.B:
Punkte haben keine Dimensionen, jedoch werden denen koordinaten zugewiesen. Geraden beinhalten unendliche Punkte in einer geraden Richtung, die anhand von 2 darauf liegenden Punkten beschrieben werden. Deshalb haben Geraden eine Dimension. Ebenen bestehen aus unendlich vielen Geraden, die nebeneinander in eine andere Richtung als Richtung der Geraden gelegt werden. Deswegen lässt sich eine Ebene anhand von 2 Geraden bzw. Vektoren oder 3 Punkten definiert werden. Ebenen haben 2 Dimensionen.
Eine Ebene kann verschiedene Lagen zu Punkten, Geraden oder anderen Ebenen aufweisen. Nachfolgend besprechen wir die Lagebeziehungen der Ebene zu Punkten:
Lage Punkt – Ebene:
Ein Punkt kann entweder auf der Ebene liegen oder halt nicht
Wie prüft man dieses?
Wenn die Punktkoordinaten in der Ebenengleichung stimmen, liegt der darauf und wenn nicht dann nicht. Was bedeutet darin stimmen? Das heißt, dass man die Punktkoordinaten mit x, y, z von der Ebenengleichung ersetzt. Dabei muss die Gleichung wie das Beispiel unten stimmen. Dabei muss die Gleichung wie das Beispiel unten stimmen.
Lage einer Ebene und einer Geraden:
Eine Gerade und eine Ebene können entweder parallel oder schneidend sein. Eine zu einer Ebene parallel verlaufende Gerade kann auch auf der Ebene liegen, sodass sie ein Teil der Ebene ist, wobei der Abstand zwischen denen gleich null ist.
Wie prüft man die Lagebeziehung zwischen einer Geraden und einer Ebene?
Wenn der Normalvektor der Ebene zu dem Richtungsvektor der Geraden senkrecht steht, sind die Beiden parallel. Ein Beispiel zum Thema:
Normal- und Richtungsvektoren:
Wenn die Gerade und Ebene nicht parallel sind, schneiden sie sich dann an einem Punkt.
Wie kann der Schnittpunkt berechnet werden?
Dies kann am einfachsten berechnet werden, wenn die Ebenengleichung in der Koordinatenform vorliegt. Die x, y, und z Funktionen der Geradengleichung in die Ebenengleichung wie folgendes Beispiel einsetzten. Nach der Berechnung des Parameters der Geradengleichung können die Schnittpunktskoordinaten ausgerechnet werden.
Im Nachhinein werden die von r abhängigen x, y und z Gleichungen in die Ebenengleichung eingesetzt, um r auszurechnen. Nach dem Errechnen von r können x,y und z Koordinaten des Schnittpunktes ermittelt werden, indem die mit dem errechneten r-Wert wie folgt berechnet werden.
Tags:
Ebene, Ebenen, Ebenengleichung, Ebene Gleichung, Lagebeziehung Ebene, Lage einer Ebene, Lage Punkt Ebene, Lage Gerade Ebene, Lage Ebene Ebene, Mathelöser, Ebenen Rechner
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.